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Optimizing of recurrence plots for noise reduction
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We propose a way to automatically detect the best neighborhood size for a local projective noise reduction
filter, where a typical problem is the proper identification of the noise level. Here we make use of concepts
from the recurrence quantification analysis in order to adaptively tune the filter along the incoming time series.
We define an index, to be computed via recurrence plots, whose minimum gives a clear indication of the best
size of the neighborhood in the embedding space. Comparison of the local projective noise reduction filter
using this optimization scheme with the state of the art is also provided.

DOI: 10.1103/PhysRevE.65.021102 PACS number~s!: 05.40.2a, 87.19.Dd, 43.60.1d, 43.71.1m
tim
o
tu
ro

gh
a

pl
c

en
d

o
lo

a
ar
on
s,
n
w

s
tic
e

os
f

om

fa
p
o

ds
ec-

the
eter

ions
in
an

d-
eter

pre-
gh
me
o-

no
he
ces.
se
nate
ing
ask
ral

the
the
ady
de-
the
y,
no
e is

ans
ed

hat
har-
I. INTRODUCTION

Noise reduction means that one tries to decompose a
series into two components, one of which supposedly c
tains the signal and the other one contains random fluc
tions. We want to focus our attention here on the local p
jective noise reduction scheme presented in Ref.@1#,
optimizing the most important parameter, namely, the nei
borhood size. This step was lacking and, therefore, it w
usually performed through a visual inspection of the sam
Since we will mainly discuss the noise reduction for spee
signals, we start with a short introduction of the sound g
erating mechanism of humans. In particular, as reporte
Ref. @2#, we make use of the result that the reconstruction
attractors and the estimation of their properties indicate
dimensionality of the system generating the signal~this re-
sult has been achieved through an analysis of a two-m
model of vocal-fold vibrations with methods from nonline
dynamics!. On the other hand, human speech is highly n
stationary, since inside the logical units, called phoneme
typical speech signal is almost periodic, but the concate
tion of different phonemes does not represent a lo
dimensional deterministic dynamical system. In Ref.@1# a
local projective noise reduction scheme is presented, ba
on the identification and exploration of quasidetermini
structure in the voice signal, in such a way that tools dev
oped in the framework of nonlinear time series analysis@3#
~which relies on the hypothesis of deterministic cha
namely, the signal has to reflect the complex dynamics o
purely deterministic and often with few degrees of freed
system! can be profitably used.

The reason for the success of the method relies on the
that human speech can be considered as a dynamical
nomenon driven by few parameters, with an instantane
dynamics with limit cycle solutions. As reported in Ref.@4#,
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if a D-dimensional deterministic dynamical system depen
on P parameters with slow time dependence, then delay v
tors of sufficient embedding dimension@5,6# are approxi-
mately confined to a (D1P)-dimensional manifold. The
confinement is violated on length scales of the order of
standard deviation of the data times the average param
change per unit step. The use of embedding dimens
larger than optimal solves the problem of nonstationarity
many applications, included the noise reduction for hum
speech. Data belonging to different parameter settings~i.e.,
different phonemes! populate different regions of the embe
ding space and are thus distinguishable. When the param
variation is nondeterministic, these changes cannot be
dicted from the data, but can be implicitly adjusted throu
the selection of the neighbors. The hypothesis of slow ti
dependence of theP parameters is fulfilled here, since a ph
neme comprises several repetitions~usually 10–20! of a sub-
unit calledpitch and within a phoneme there is essentially
parameter variation. The nonstationarity is involved in t
concatenation of phonemes to build up words and senten

To get an impression of how the local projective noi
reduction scheme works, assume that one has to elimi
noise from music stored on an old-fashioned long play
~LP! record, induced by scratches on the black disc. The t
becomes almost trivial if one can make use of seve
samples of this LP. When playing them synchronously,
signal part of the different tracks is identical, whereas
noise part is independent: As a consequence of that, alre
a simple averaging would enhance the sound quality. In
terministic chaotic signals, this redundancy is stored in
past. Similar initial conditions will behave in a similar wa
at least for short periods. In human voice signals there is
need to suppose a chaotic behavior, since every phonem
made up of pitches in an almost periodic fashion. This me
that every logical unit provides all the redundancy requir
for its filtering.

Careful investigation of time and length scales shows t
the sound wave characterizing a single phoneme has a c
©2002 The American Physical Society02-1
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acteristic profile on about 5–10 ms. Since a phoneme h
duration of about 100 ms, the redundancy consists of 10
repetitions of pitches. Searching for neighbors in equal p
nemes belonging to other words introduces large numer
efforts, requires longer sentences and does not improve
situation much, since changed amplitudes and dilatation
compression in time destroy the similarity. Thus the lo
projective noise reduction scheme works with just intrap
neme neighbors, allowing an almost online execution. Fo
detailed description of the algorithm, see Ref.@1#. Here we
want to address an optimization problem, namely, we wan
provide a mechanism able to automatically identify the b
neighborhood size, strictly related to the noise level.

II. LOCAL PROJECTIVE NOISE REDUCTION SCHEME

Deterministic dynamical systems are defined by equati
of motion in a vector valued space. Since in most exp
ments only a single observable is measured, one needs a
to reconstruct vector valued time series from scalar time
ries. Embedding techniques are employed for this purp
The reconstructed sequence of vectors can be interpreted
sample of a trajectory of a dynamical system in a rec
structed~artificial! phase space, which is related to the u
known space of the underlying dynamical system by so
smooth coordinate transform, if the measurement func
was smooth. As a consequence, its invariants such as a
tor dimensions, Lyapunov exponents and entropies are
same.

Let us consider a dynamical systemẋ5f(x) in a phase
spaceG,Rd, a measurement functionh: Rd→R, and a
sampling intervalDt. Denote the scalar measurements o
tained through the sampling bysnªh„x(t5nDt)…. Delay
vectors are constructed as follows:

sn5@sn ,sn2t ,sn22t ,...,sn2~m21!t#, ~1!

wherem is the dimension of the vector andtPN a delay that
makes no mathematical difference, but quite important
practice. If m.2D f , the m-dimensional delay embeddin
space is equivalent to the original unobserved phase spa
the dynamical system, since, in particular, the dynamicss
is deterministic. The requirement ofm.2D f is related to
geometry and guarantees that self-intersections of the re
structed sets due to nonlinearities are nongeneric. For m
details, see@1,3,4#.

When looking for neighbors, we have to restrict o
search to a subset of the embedding space. The size
plays a crucial role. A very small value will provide nothin
but the point itself and, therefore, the filter will produce
effect on the time series. A very big value will identify all th
points as possible neighbors and the algorithm will perfo
just a global averaging, destroying completely the origi
voice. From a computational point of view, the smaller t
size of the neighborhood is, the faster the program runs.
there is a lower limit for the size of the subspace, given
the noise level. As depicted in Fig. 1, the diameter of
neighborhood has to be bigger than the size of the clou
points contaminated by noise. We want to filter the point
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the base of the arrow. For this purpose we look for its nei
bors in a subset of the embedding space indicated by the
square. The bold curve represents the original attractor
the cloud of points is the effect of the contamination w
noise. The straight line is the best linear approximation of
attractor given the collected set of neighbors. The arrow
dicates what the filter does, namely, the projection of
actual point onto the local linear reconstruction of the attr
tor.

The local projective noise reduction algorithm can, the
fore, be summarized in the following scheme.

~1! For every delay vectorsn , all neighbors~with respect
to a given neighborhood size to be optimized! are collected.

~2! The covariance matrixCi j 5SUn
(b̂k) i(b̂k) j , whereUn

represents the neighborhood, is computed.
~3! The vectors corresponding to the largest singular v

ues are supposed to represent the directions spanning
hyperplane that approximates the dynamics.

~4! The projection onto these dominant directions p
forms the noise reduction.

The noise reduction algorithm can also be seen as a m
mization problem with the following cost function:

L5 (
n8PUn

F (
q51

Q

aq
•~aq

•sn8!G2

2 (
q,q8

lq,q8~aq
•aq2dq,q8!.

~2!

It has to be minimized with respect toaq ~orthonormal vec-
tors such that the local projection onto these vectors is m
mal! andlq,q8 ~Lagrange multipliers introduced in order t
impose the orthogonality of theaqs.!.

FIG. 1. How the local projective noise reduction scheme wor
The curve represents a branch of the attractor in a proper em
ding space~qualitative illustration!, which shares with the phas
space all the topological properties of the system. After the c
tamination with noise every point is moved away from the origin
curve in a random way. Imagine now that we want to remove no
from the sample at the starting point of the arrow. The idea is
collect neighbors of this point up to a certain distance~the param-
eter we want to optimize here!, getting a linear local approximation
of the original attractor. A projection of the selected point onto t
straight line performs the noise reduction.
2-2
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OPTIMIZING OF RECURRENCE PLOTS FOR NOISE . . . PHYSICAL REVIEW E 65 021102
III. IDENTIFICATION OF THE BEST
NEIGHBORHOOD SIZE

The effect of a too big neighborhood is reported in Fig.
where the identification of the original manifold cannot
correctly performed and, therefore, the projection of the
tual point does not act along the proper direction. This h
pens because of the minimization procedure. We have to
a local linear approximation of the attractor that minimiz
the sum of distances from the noisy points. With such
neighborhood we consider too many points, including fa
ones~because belonging to another branch of the attrac!
and the resulting manifold is far away from the correct o
Also in the case depicted in Fig. 3, a clear identification
the original manifold is not possible. Here the solution of t
problem is not unique, due to the fact that the size of
neighborhood is too small and the points are distributed
most uniformly and the projection almost random.

It is thus evident that one needs a mechanism to de
which is the best size of the neighborhood to be taken
consideration. As a further example let us have a look at
lower panel of Fig. 3: Here we consider a whistle, one of
simplest acoustic signals that an human being can gene
The signal is almost sinusoidal and, therefore, with
proper parameters, the attractor looks like a circle. The lo
left panel of Fig. 3 refers to the reconstructed embedd
space related to this signal. We proceed now by addin
30% noise to the whistle and filtering the new signal with
wrong set of parameters, namely, with a too small value

FIG. 2. Effect of a too big neighborhood, qualitative illustratio
The algorithm is not able to correctly identify the original manifo
because two different branches of the attractor are erroneously
sidered as neighbors. Therefore, the projection is performed on
wrong direction and the quality of the filtering is bad.
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the neighborhood size. The lower right panel of Fig. 3 sho
how the reconstructed attractor looks. We do not report
picture of the attractor after the correct filtering, since with
the resolution of this paper it would be almost indistinguis
able from the original. The reason for the strange shape
the right panel is the following. Once considered the emb
ding space for the noisy signal, we look for neighbo
in such small regions that the distributions of poin

n-
a

FIG. 3. Effect of a too small neighborhood. Upper panel: T
original manifold cannot be correctly identified, since the distrib
tion of points inside the neighborhood is almost uniform. Midd
panel: Attractor of a clean whistle in a proper embedding spa
Bottom panel: Attractor of the same whistle after the contaminat
with a 30% additive noise and the filtering with a too small neig
borhood size. The result is the born of completely artificial stru
tures due to projections onto random directions.
2-3
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within them is almost uniform; therefore, we are not able
identify the original manifold and locally we perform proje
tions onto random, hence wrong, directions.

We proceed now adding noise to a phoneme, as illustra
in Fig. 4 ~time along thex axis, amplitude of the microphon
signal in arbitrary units along they axis!. Starting from the
upper panel we have the original time series plus 0%, 3
and 50% of noise. The voice was recorded with a 20-k
sampling rate, so that 2000 points correspond to 100 ms.
recurrence plot@7# of the noise-free time series is reported
Fig. 5. Recurrence plots are a qualitative tool with seve
potential applications. They consist of plotting the followin
square matrix:

FIG. 4. Example of a single phoneme. Upper panel: Origi
time series, without noise. Middle panel: With 30% noise. Low
panel: With 50% noise. Time along thex axis, amplitude of the
microphone signal in arbitrary units along they axis.

FIG. 5. Recurrence plot of the time series reported on the up
panel of Fig. 4. A dot in position~i,j! reflects the conditionusi

2sj u,e. The observation of lines parallel to the main diagonal i
significant signature of determinism.
02110
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wheree is a predefined tolerance level andQ~ ! is the Heavi-
side step function,Q(x)51 if x.0 andQ(x)50 elsewhere.
Hence, the matrix elements are unity for all pairs of indicei,
j whose corresponding delay vectors have a distance sm
thane. If a recurrence plot as in Fig. 5 occurs, this is a cle
indication that delay vectors really represent meaning
states. The line structure shows the approximate periodi
inside phonemes and the number of intraphoneme neighb

A point in the recurrence plot mirrors a recurrence of t
dynamical process and the plot can be considered as a g
picture of the autocorrelation structure of the system. Con
quently, a recurrence plot visualizes the distance mat
which in turn represents the autocorrelation present in
series at all possible time scales. A recurrence can, in p
ciple, be observed by chance whenever the system expl
two nearby points of its state space. On the contrary,
observation of recurrence points consecutive in time~and
then forming lines parallel to the main diagonal! is an impor-
tant signature of deterministic structuring@8–10#. The noise
does not destroy the qualitative structure of Fig. 5, provid
one is able to identify the correct set of parameters. T
distinction between signal and noise based on the determ
istic content is still possible and, therefore, also the no
reduction is not inhibited.

Starting from the recurrence plot~defined here only in the
1000 central points to avoid edge effects!, we define the
following quantities.

~1! Np(e): We compute the histogram along the ma
diagonal direction,

hi5 (
k2 j 5 i

r jk , ~4!

wherer jk is a point in the recurrence plot andhi the histo-
gram we get after this computation, reported in Fig. 6. Sin
we want to count the number of peaks and to be sure they
sharp, we define a threshold~dashed line of Fig. 6! as the

l
r

er

FIG. 6. Histogram derived from the recurrence plot~RP! of Fig.
5 according to Eq.~4!. In this case we getNp(e)513.
2-4
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OPTIMIZING OF RECURRENCE PLOTS FOR NOISE . . . PHYSICAL REVIEW E 65 021102
average height of the histogram plus three times the stan
deviation. The number of peaksNp(e) is then given by the
number ofhi such thathi.threshold andhi 21,threshold~if
a peak is made of severalhis, not the case of Fig. 6, we wan
to count it just once!.

~2! N'(e): We computeS i , j r i j /N, the average number o
neighbors that points have.

Of course these two quantities depend one: The best
value of it is the one that maximizes the number of peaks
produces a value ofN'(e) as close as possible toNp(e). The
optimal recurrence plot is the one where lines are long
not fat, in order to avoid phase identification problems.
the task is finding the value ofe such that the following
quantity is minimized:

b~e!5
uN'~e!2Np~e!u

N'~e!
~5!

The purpose ofN'(e) as denominator of Eq.~5! is to get
a better identification of the minimum ofb~e!: In Fig. 7 we
can see the result of such a computation for the three di
ent noise levels depicted in Fig. 4, namely, 0%, 30%, a
50%. Not surprisingly, a bigger noise requires a bigg
neighborhood. For small values ofe we have almost no poin
outside the main diagonal; therefore,N'(e) is close to zero
but this is not the case forNp(e), since the few points are
considered as isolated peaks: Henceb~e! is very big. Big
values ofe are such that the recurrence plot is almost full
points: N'(e) is close toN ~the length of the time serie
under observation! and there is no isolated peak. Cons
quently b(e)'1. The optimal situation is whenN'(e)
'Np(e), namely, the lines are neither fragmented nor f
All the recurrence points belong to line structures and
quantity is maximized.

FIG. 7. Identification of the beste for the three cases of Fig. 4
It is very intuitive that in increasing the noise level one has
consider a bigger neighborhood size.
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IV. RESULTS AND COMPARISONS

Now we want to show some results of the application
the method and a comparison with the state of the art
typical result is provided by Fig. 8, where the three pan
show the original signal~upper panel!, the additive noise
used to contaminate it~middle panel! and the difference be
tween the filtered noisy signal and the clean one~lower
panel, what we call residual noise!. The variance of the
added noise is 60% the variance of the signal, giving rise
a signal-to-noise ratio (SNR)52.2 dB. The variance of the
residual noise is 4.6% the variance of the original signal, i
SNR513.4 dB. In the case depicted in Fig. 8 the algorith
is, therefore, able to provide a gain of 11.2 dB.

The residual noise shows peaks corresponding to tra
tions between phonemes, as clearly visible from the low
panel of Fig. 8. This is a limitation of the local projectiv
noise reduction scheme. This filter is working with intraph
neme neighbors and the quantity close to the transition
smaller than in the middle of a phoneme because of non
tionary effects. The quality of the filter is, therefore, poor
there, as reflected by the peaks in the residual noise.

The state of the art noise reduction scheme is based on
Ephraim and Malah filter, making use of spectral subtract
techniques. Spectral subtraction is a popular method
speech enhancement, if the speech signal is corrupted
additive noise. It is based on the manipulation of the mag
tude of the noisy-speech spectrum. The application propo
by @11,12# makes use of two filter banks with bark-scale
frequency bands. A discrete wavelet transformation an
nonuniform polyphase filterbank. The basic idea is t
following: Signal enhancement is performed in the frequen
domain by operating on the Fourier transformation of t
observed samples. The estimation of the noise-redu

FIG. 8. Performance of the optimized local projective noise
duction scheme. Upper panel: Original ‘‘clean’’ speech sign
Middle panel: Numerical noise added to the time series. Low
panel: Residual noise~difference between the filtered noisy sign
and the original one!. The amplitude of the signal along they axis is
given in arbitrary units. It is interesting to note peaks in the resid
noise corresponding to transitions between phonemes, a typ
limitation of this approach.
2-5
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MATASSINI, KANTZ, HOŁYST, AND HEGGER PHYSICAL REVIEW E65 021102
speech spectrum is obtained by subtracting an estim
mean spectral magnitude of the noise from the spectral m
nitude of the signal containing speech plus noise. It is a k
of spectral weighting, followed by an inverse Fourier tran
formation to come back to the time domain. For more det
see@12#.

In Fig. 9 we show the performance of the filter compar
to the Ephraim and Malah noise reduction scheme as im
mented by Gu¨lzow and collaborators in@12#. Also the im-
provement of this optimizede ~compared to the case wheree
is kept constant! is visible. As a measure of performance, w
use the gain in decibels, given by

~gain!510 logS (~ ŷk2sk!
2

(~yk2sk!
2D , ~6!

FIG. 9. Comparison of the optimized local projective nois
reduction scheme with the Ephraim and Malah filter, state of the
s

ys

ol
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wheresk is the clean signal,yk the noisy signal, andŷk the
signal after noise reduction. Fig. 9 is the summary of seve
cases like Fig. 8, where the variance of the noise is rang
from 10% up to 500% the variance of the original spee
signal. The improvement obtained when using the indicat
of Eq. ~5! is particularly significant when one has to filter
full sentence, where the noise may affect different words i
very different fashion. In such a case the use of a constae
is far from the optimal solution and the new tool we ha
implemented plays a fundamental role in the quality one
achieve.

V. CONCLUSIONS

Noise is almost ubiquitous and the task concerned with
remotion is a very challenging one. We have introduced h
the local projective noise reduction scheme, an algorit
exploiting deterministic structures of the signal in order
separate it from the noise, which is supposed not to be
related with the clean time series. The main problem wh
using this filter is the tuning of its parameters, in particul
the size of the neighborhood. With this work we have p
posed a way to optimize this value with an automa
scheme. The optimal neighborhood size is the one that
vides a recurrence plot whose lines are neither fragmen
nor fat. The algorithm becomes now a double minimizati
problem, the first being related to the cost function involv
in the projection, the second involving the minimization
the indexb~e! with respect toe.

The results presented show the robustness of the me
in the correct identification of the noise level present in t
time series. With such an approach it is no longer neces
to visually inspect the recorded noisy sample during the
tering in order to get the best result with the minimum e
forts, namely, within the shortest possible computatio
time.
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