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Optimizing of recurrence plots for noise reduction

Lorenzo Matassifdi and Holger Kantz
Max-Planck-Institut fu Physik komplexer Systeme, tNoitzer Strasse 38, D-01187 Dresden, Germany

Janusz Hotyst
Faculty of Physics, Warsaw University of Technology, Koszykowa 75, PL-00662 Warsaw, Poland

Rainer Hegger
Institute for Physical and Theoretical Chemistry, J. W. Goethe-University, Marie Curie Strasse 11, D-60439 Frankfurt, Germany
(Received 14 February 2001; revised manuscript received 11 October 2001; published 11 Januyary 2002

We propose a way to automatically detect the best neighborhood size for a local projective noise reduction
filter, where a typical problem is the proper identification of the noise level. Here we make use of concepts
from the recurrence quantification analysis in order to adaptively tune the filter along the incoming time series.
We define an index, to be computed via recurrence plots, whose minimum gives a clear indication of the best
size of the neighborhood in the embedding space. Comparison of the local projective noise reduction filter
using this optimization scheme with the state of the art is also provided.
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[. INTRODUCTION if a D-dimensional deterministic dynamical system depends
on P parameters with slow time dependence, then delay vec-
Noise reduction means that one tries to decompose a timers of sufficient embedding dimensidh,6] are approxi-
series into two components, one of which supposedly conmately confined to a [§ + P)-dimensional manifold. The
tains the signal and the other one contains random fluctuazonfinement is violated on length scales of the order of the
tions. We want to focus our attention here on the local prostandard deviation of the data times the average parameter
jective noise reduction scheme presented in Rdfl, change per unit step. The use of embedding dimensions
optimizing the most important parameter, namely, the neighlarger than optimal solves the problem of nonstationarity in
borhood size. This step was lacking and, therefore, it wasnany applications, included the noise reduction for human
usually performed through a visual inspection of the samplespeech. Data belonging to different parameter settings
Since we will mainly discuss the noise reduction for speectdifferent phonemespopulate different regions of the embed-
signals, we start with a short introduction of the sound gending space and are thus distinguishable. When the parameter
erating mechanism of humans. In particular, as reported inariation is nondeterministic, these changes cannot be pre-
Ref.[2], we make use of the result that the reconstruction officted from the data, but can be implicitly adjusted through
attractors and the estimation of their properties indicate lovthe selection of the neighbors. The hypothesis of slow time
dimensionality of the system generating the sigfthis re-  dependence of the parameters is fulfilled here, since a pho-
sult has been achieved through an analysis of a two-masteme comprises several repetitidgnsually 10—20 of a sub-
model of vocal-fold vibrations with methods from nonlinear unit calledpitch and within a phoneme there is essentially no
dynamicg. On the other hand, human speech is highly nonparameter variation. The nonstationarity is involved in the
stationary, since inside the logical units, called phonemes, eoncatenation of phonemes to build up words and sentences.
typical speech signal is almost periodic, but the concatena- To get an impression of how the local projective noise
tion of different phonemes does not represent a low+eduction scheme works, assume that one has to eliminate
dimensional deterministic dynamical system. In Rdff a  noise from music stored on an old-fashioned long playing
local projective noise reduction scheme is presented, bas&tlP) record, induced by scratches on the black disc. The task
on the identification and exploration of quasideterminiticbecomes almost trivial if one can make use of several
structure in the voice signal, in such a way that tools develsamples of this LP. When playing them synchronously, the
oped in the framework of nonlinear time series analy8is  signal part of the different tracks is identical, whereas the
(which relies on the hypothesis of deterministic chaosnoise part is independent: As a consequence of that, already
namely, the signal has to reflect the complex dynamics of @ simple averaging would enhance the sound quality. In de-
purely deterministic and often with few degrees of freedomterministic chaotic signals, this redundancy is stored in the
system can be profitably used. past. Similar initial conditions will behave in a similar way,
The reason for the success of the method relies on the faet least for short periods. In human voice signals there is no
that human speech can be considered as a dynamical pheeed to suppose a chaotic behavior, since every phoneme is
nomenon driven by few parameters, with an instantaneousade up of pitches in an almost periodic fashion. This means
dynamics with limit cycle solutions. As reported in Rpf], that every logical unit provides all the redundancy required
for its filtering.
Careful investigation of time and length scales shows that
*Email address: lorenzo@mpipks-dresden.mpg.de the sound wave characterizing a single phoneme has a char-
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acteristic profile on about 5-10 ms. Since a phoneme has .

duration of about 100 ms, the redundancy consists of 10—2( e ol e
repetitions of pitches. Searching for neighbors in equal pho- RO A
nemes belonging to other words introduces large numerica .;.-..'- el et et 0,
efforts, requires longer sentences and does not improve th . g T~
situation much, since changed amplitudes and dilatation ol * e o’
compression in time destroy the similarity. Thus the local ° :'..'

projective noise reduction scheme works with just intrapho- =
neme neighbors, allowing an almost online execution. For a* <.
detailed description of the algorithm, see Rdf|. Here we . g°
want to address an optimization problem, namely, we want ta °/;
provide a mechanism able to automatically identify the best <%
neighborhood size, strictly related to the noise level.

FIG. 1. How the local projective noise reduction scheme works.
The curve represents a branch of the attractor in a proper embed-
Il. LOCAL PROJECTIVE NOISE REDUCTION SCHEME ding space(qualitative illustration, which shares with the phase

Deterministic dvnamical svstems are defined by e uationspace all the topological properties of the system. After the con-
y y yeq .?amination with noise every point is moved away from the original

of motion in a vector valued space. Since in most EXPerl urve in a random way. Imagine now that we want to remove noise

ments only a single observablle IS mef”lsured’ one ”eeP'S aWBYm the sample at the starting point of the arrow. The idea is to
to reconstruct vector valued time series from scalar time sésqjact neighbors of this point up to a certain distafite param-
ries. Embedding techniques are employed for this purpoSger we want to optimize heregetting a linear local approximation
The reconstructed sequence of vectors can be interpreted ag@he original attractor. A projection of the selected point onto the
sample of a trajectory of a dynamical system in a reconstraight line performs the noise reduction.

structed(artificial) phase space, which is related to the un-

known space of the underlying dynamical system by som

e . N
smooth coordinate transform, if the measurement functioAN® bgse of the arrow. For this purpose we IO,Ok for its ne|gh?
was smooth. As a consequence, its invariants such as attra2rs in & subset of the embedding space indicated by the big

tor dimensions, Lyapunov exponents and entropies are thefuare. The bold curve represents the original attractor and
same. the cloud of points is the effect of the contamination with

Let us consider a dynamical systersf(x) in a phase noise. The straight line is the best linear approximation of the
spaceFCRd, a measurement function: R9—R, and a attractor given the collected set of neighbors. The arrow in-
sampling intervalAt. Denote the scalar measurements ob-dicates what the filter does, namely, the projection of the
tained through the sampling bs,:=h(x(t=nAt)). Delay actual point onto the local linear reconstruction of the attrac-
vectors are constructed as follows: tor.

The local projective noise reduction algorithm can, there-
$=[SnSn—7+Sn-271---:Sn—(m-1)7» (1)  fore, be summarized in the following scheme.
(1) For every delay vectas,, all neighborgwith respect

wheremis the dimension of the vector and: N a delay that  t0 @ given neighborhood size to be optimizede collected.
makes no mathematical difference, but quite important in (2) The covariance matriEijzzun(Bk)i(,fSk)j , Wherel,
practice. Ifm>2Dy, the m-dimensional delay embedding represents the neighborhood, is computed.

space is equivalent to the original unobserved phase space 07p(3) The vectors corresponding to the largest singular val-
the dynamical system, since, in particular, the dynamics of yes are supposed to represent the directions spanning the
is deterministic. The requirement m>2Df is related to hyperp|ane that approximates the dynamics'

geometry and guarantees that self-intersections of the recon- (4) The projection onto these dominant directions per-
structed sets due to nonlinearities are nongeneric. For mo¥grms the noise reduction.

details, se¢1,3,4. The noise reduction algorithm can also be seen as a mini-

When looking for neighbors, we have to restrict our mization problem with the following cost function:
search to a subset of the embedding space. The size of it

plays a crucial role. A very small value will provide nothing
but the point itself and, therefore, the filter will produce no 2
effect on the time series. A very big value will identify all the | = E ad- (ad- Sv)} - z Ngq(89-a0— 8qq0).
points as possible neighbors and the algorithm will perform n' el a.q9'

just a global averaging, destroying completely the original 2
voice. From a computational point of view, the smaller the

size of the neighborhood is, the faster the program runs. But

there is a lower limit for the size of the subspace, given byit has to be minimized with respect & (orthonormal vec-
the noise level. As depicted in Fig. 1, the diameter of thetors such that the local projection onto these vectors is mini-
neighborhood has to be bigger than the size of the cloud aial) and\ 4 (Lagrange multipliers introduced in order to
points contaminated by noise. We want to filter the point aimpose the orthogonality of thafls.).

Q
>

q=1
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FIG. 2. Effect of a too big neighborhood, qualitative illustration. 005 05 70 15 20
The algorithm is not able to correctly identify the original manifold s(n)
because two different branches of the attractor are erroneously con-
sidered as neighbors. Therefore, the projection is performed onto a 20
wrong direction and the quality of the filtering is bad.

I1l. IDENTIFICATION OF THE BEST
NEIGHBORHOOD SIZE B

The effect of a too big neighborhood is reported in Fig. 2, m b
where the identification of the original manifold cannot be 7
correctly performed and, therefore, the projection of the ac-
tual point does not act along the proper direction. This hap- 05 L
pens because of the minimization procedure. We have to find
a local linear approximation of the attractor that minimizes \
the sum of distances from the noisy points. With such a 0.0 , , ‘
neighborhood we consider too many points, including false 0.0 05 1.0 1.5 20

ones(because belonging to another branch of the attractor
and the resulting manifold is far away from the correct one. F|G. 3. Effect of a too small neighborhood. Upper panel: The
Also in the case depicted in Fig. 3, a clear identification oforiginal manifold cannot be correctly identified, since the distribu-
the original manifold is not possible. Here the solution of thetion of points inside the neighborhood is almost uniform. Middle
problem is not unique, due to the fact that the size of thepanel: Attractor of a clean whistle in a proper embedding space.
neighborhood is too small and the points are distributed alBottom panel: Attractor of the same whistle after the contamination
most uniformly and the projection almost random. with a 30% additive noise and the filtering with a too small neigh-
It is thus evident that one needs a mechanism to decideorhood size. The result is the born of completely artificial struc-
which is the best size of the neighborhood to be taken intdures due to projections onto random directions.
consideration. As a further example let us have a look at the
lower panel of Fig. 3: Here we consider a whistle, one of thethe neighborhood size. The lower right panel of Fig. 3 shows
simplest acoustic signals that an human being can generateow the reconstructed attractor looks. We do not report the
The signal is almost sinusoidal and, therefore, with thepicture of the attractor after the correct filtering, since within
proper parameters, the attractor looks like a circle. The lowethe resolution of this paper it would be almost indistinguish-
left panel of Fig. 3 refers to the reconstructed embeddingible from the original. The reason for the strange shape of
space related to this signal. We proceed now by adding the right panel is the following. Once considered the embed-
30% noise to the whistle and filtering the new signal with ading space for the noisy signal, we look for neighbors
wrong set of parameters, namely, with a too small value ofn such small regions that the distributions of points
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FIG. 6. Histogram derived from the recurrence gRP) of Fig.

FIG. 4. Example of a single phoneme. Upper panel: Original5 according to Eq(4). In this case we gelil,(e) =13.
time series, without noise. Middle panel: With 30% noise. Lower
pa}nelz With 5_0% npise. _Time alqng theaxis, a_mplitude of the rj =®(E_|S_Sj|)1 3
microphone signal in arbitrary units along thexis.

wheree is a predefined tolerance level afd) is the Heavi-

within them is almost uniform; therefore, we are not able toside step function®(x) =1 if x>0 and®(x) =0 elsewhere.
identify the original manifold and locally we perform projec- Hence, the matrix elements are unity for all pairs of indices
tions onto random, hence wrong, directions. j whose corresponding delay vectors have a distance smaller

We proceed now adding noise to a phoneme, as illustratetane. If a recurrence plot as in Fig. 5 occurs, this is a clear
in Fig. 4 (time along thex axis, amplitude of the microphone indication that delay vectors really represent meaningful
signal in arbitrary units along thg axis). Starting from the ~states. The line structure shows the approximate periodicity
upper panel we have the original time series plus 0%, 30%dnside phonemes and the number of intraphoneme neighbors.
and 50% of noise. The voice was recorded with a 20-kHz A pOint in the recurrence pIOt mirrors a recurrence of the
sampling rate, so that 2000 points correspond to 100 ms. Thdynamical process and the plot can be considered as a global
recurrence p|oE7] of the noise-free time series is reported in picture of the autocorrelation structure of the system. Conse-
Fig. 5. Recurrence plots are a qualitative tool with severafuently, a recurrence plot visualizes the distance matrix,
potential applications. They consist of plotting the following Which in turn represents the autocorrelation present in the

square matrix: series at all possible time scales. A recurrence can, in prin-
ciple, be observed by chance whenever the system explores
2400 . . : . two nearby points of its state space. On the contrary, the

observation of recurrence points consecutive in tiaed
then forming lines parallel to the main diagonial an impor-
tant signature of deterministic structurif@—10]. The noise
does not destroy the qualitative structure of Fig. 5, provided
one is able to identify the correct set of parameters. The
wol | distinction between signal and noise based on the determin-
istic content is still possible and, therefore, also the noise
reduction is not inhibited.

1500 | Starting from the recurrence pl@efined here only in the
1000 central points to avoid edge effectave define the
following quantities.

1200 ¥ | (1) Np(e): We compute the histogram along the main
diagonal direction,

2100 |

index j

2500 1200 1500 1800 2100 2400 h;= E Fik> 4

index i k=)=

FIG. 5. Recurrence plot of the time series reported on the uppetherer, is a point in the recurrence plot arg the histo-
panel of Fig. 4. A dot in positior(i,j) reflects the conditions; gram we get after this computation, reported in Fig. 6. Since
—sj|<e. The observation of lines parallel to the main diagonal is awe want to count the number of peaks and to be sure they are
significant signature of determinism. sharp, we define a thresholdashed line of Fig. bas the
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dentificati f the best for the th ¢ Fi duction scheme. Upper panel: Original “clean” speech signal.
.FIG' 7'.' e_n.tl |cat|on.o t e ea_i or the t ree cases o Fig. 4. Middle panel: Numerical noise added to the time series. Lower
It is very intuitive that in increasing the noise level one has to

. - - . panel: Residual noisélifference between the filtered noisy signal
consider a bigger neighborhood size.

and the original one The amplitude of the signal along thexis is
given in arbitrary units. It is interesting to note peaks in the residual
average height of the histogram plus three times the standafgise corresponding to transitions between phonemes, a typical
deviation. The number of peaké,(e) is then given by the limitation of this approach.
number ofh; such thah;>threshold andh; _; <threshold(if
a peak is made of sevetals, not the case of Fig. 6, we want IV. RESULTS AND COMPARISONS
to count it just oncg

(2) N, (€): We compute,; jri; /N, the average number of
neighbors that points have.

Now we want to show some results of the application of
the method and a comparison with the state of the art. A

. typical result is provided by Fig. 8, where the three panels
Of course these two quantities depend @nThe best how the original signalupper pane| the additive noise

value of it is the one that maximizes the number of peaks andl_ 4 ' o eamin e imiddle panel and the difference be-

optmal recurrence plot o the one where lines aré long bu!'eeM e fitered noisy signal and the clean deer
P P 9 anel, what we call residual noiseThe variance of the

Phoé iztsilgnisogidnedrir;[o ?r\]/g“\j/aﬁ)gssé 'gﬁgﬁfﬁegt'ot?]epr% li’lloevr\:ﬁ S added noise is 60% the variance of the signal, giving rise to
\SK 1S Tinding } 9 a signal-to-noise ratio (SNR)2.2 dB. The variance of the
quantity is minimized: . o : o : :
residual noise is 4.6% the variance of the original signal, i.e.,
SNR=13.4 dB. In the case depicted in Fig. 8 the algorithm
N _N is, therefore, able to provide a gain of 11.2 dB.
M (5) The residual noise shows peaks corresponding to transi-
N, (e) tions between phonemes, as clearly visible from the lower
panel of Fig. 8. This is a limitation of the local projective
noise reduction scheme. This filter is working with intrapho-
The purpose oN, (€) as denominator of Ed5) is to get  neme neighbors and the quantity close to the transitions is
a better identification of the minimum ¢(e): In Fig. 7 we  smaller than in the middle of a phoneme because of nonsta-
can see the result of such a computation for the three diffetionary effects. The quality of the filter is, therefore, poorer
ent noise levels depicted in Fig. 4, namely, 0%, 30%, andhere, as reflected by the peaks in the residual noise.
50%. Not surprisingly, a bigger noise requires a bigger The state of the art noise reduction scheme is based on the
neighborhood. For small values efve have almost no point Ephraim and Malah filter, making use of spectral subtraction
outside the main diagonal; therefofé, (€) is close to zero techniques. Spectral subtraction is a popular method of
but this is not the case fd¥,(e), since the few points are speech enhancement, if the speech signal is corrupted by
considered as isolated peaks: Hergfe) is very big. Big  additive noise. It is based on the manipulation of the magni-
values ofe are such that the recurrence plot is almost full oftude of the noisy-speech spectrum. The application proposed
points: N, (e) is close toN (the length of the time series by [11,12 makes use of two filter banks with bark-scaled
under observationand there is no isolated peak. Conse-frequency bands. A discrete wavelet transformation and a
quently B(e)~1. The optimal situation is whem, (¢) nonuniform polyphase filterbank. The basic idea is the
~N,(€e), namely, the lines are neither fragmented nor fat:following: Signal enhancement is performed in the frequency
All the recurrence points belong to line structures and thelomain by operating on the Fourier transformation of the
quantity is maximized. observed samples. The estimation of the noise-reduced

Ble)=
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wheresy is the clean signaly, the noisy signal, ang, the
. a8 signal after noise reduction. Fig. 9 is the summary of several
— o« cases like Fig. 8, where the variance of the noise is ranging
e from 10% up to 500% the variance of the original speech
e e signal. The improvement obtained when using the indication
10 | o 1 of Eq. (5) is particularly significant when one has to filter a
A ok
o full sentence, where the noise may affect different words in a
Agt
) Y very different fashion. In such a case the use of a congtant
c i
£ Al is far from the optimal solution and the new tool we have
[+ Pk
Z o implemented plays a fundamental role in the quality one can
5L achieve.
A
,‘ t t- Ephraim and Malah filter V. CONCLUSIONS
| & ¢ Our filter with constant neighborhood size . . L. .
. A4 Our filter with optimized neighborhood size Noise is almost ubiquitous and the task concerned with its
0 - ‘ : - remotion is a very challenging one. We have introduced here
0 100 200 300 400 500 . : . . .
nelesilavel{Fof thevaanes b hesignsl) the local projective noise reduction scheme, an algorithm

exploiting deterministic structures of the signal in order to
FIG. 9. Comparison of the optimized local projective noise- separate it from the noise, which is supposed not to be cor-
reduction scheme with the Ephraim and Malah filter, state of the artye|lated with the clean time series. The main problem when

using this filter is the tuning of its parameters, in particular,

speech spectrum is obtained by subtracting an estimatefle size of the neighborhood. With this work we have pro-

mean spectral magnitude of the noise from the spectral maiosed a way to optimize this value with an automatic

nitude of the signal containing speech plus noise. It is a kingcheme. The optimal neighborhood size is the one that pro-
of spectral weighting, followed by an inverse Fourier trans-yides a recurrence plot whose lines are neither fragmented
formation to come back to the time domain. For more details,or fat. The algorithm becomes now a double minimization
see[12]. problem, the first being related to the cost function involved
In Fig. 9 we show the performance of the filter comparedin the projection, the second involving the minimization of
to the Ephraim and Malah noise reduction scheme as implehe index3(e) with respect toe.
mented by Glzow and collaborators ifi12]. Also the im- The results presented show the robustness of the method
provement of this optimized (compared to the case whese  in the correct identification of the noise level present in the
is kept constantis visible. As a measure of performance, we time series. With such an approach it is no longer necessary
use the gain in decibels, given by to visually inspect the recorded noisy sample during the fil-
- P tering in order to get the best result with the minimum ef-
iEyK_Sk; ) (6) forts, namely, within the shortest possible computational
Yk~ Sk

(gain=101Io ;
time.
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